Publication profile
Publication profile
Martin Jullum
Name:
Martin Jullum
Title:
Seniorforsker / Senior Research Scientist
Phone:
(+47) +47 22 85 26 08
Email:
Jullum [at] nr [dot] no
Scientific areas:
Statistical analysis and methodology, Machine learning, Model selection

Add to contacts (vCard) Show publications
Academic article
2023
Some recent trends in embeddings of time series and dynamic networks. Journal of Time Series Analysis (ISSN 0143-9782). doi: 10.1111/jtsa.12677. 2023.
. 2022
Using Shapley Values and Variational Autoencoders to Explain Predictive Models with Dependent Mixed Features. Journal of machine learning research (ISSN 1532-4435). 23(213) pp 1-51. 2022. Arkiv Fulltekst
. 2021
Efficient and simple prediction explanations with groupShapley: A practical perspective. CEUR Workshop Proceedings (ISSN 1613-0073). 3014 2021. Fulltekst
. Comparison of Contextual Importance and Utility with LIME and Shapley Values. Lecture Notes in Computer Science (LNCS) (ISSN 0302-9743). 12688 pp 39-54. doi: 10.1007/978-3-030-82017-6_3. 2021.
. Explaining predictive models using Shapley values and non-parametric vine copulas. Dependence Modeling (ISSN 2300-2298). 9(1) pp 62-81. doi: 10.1515/demo-2021-0103. 2021. Fulltekst
. Explaining individual predictions when features are dependent: More accurate approximations to Shapley values. Artificial Intelligence (ISSN 0004-3702). 298 doi: 10.1016/j.artint.2021.103502. 2021.
. 2020
shapr: An R-package for explaining machine learning models with dependence-aware Shapley values. Journal of Open Source Software (JOSS) (ISSN 2475-9066). 5(46) doi: 10.21105/joss.02027. 2020. Arkiv
. Investigating mesh-based approximation methods for the normalization constant in the log Gaussian Cox process likelihood. Stat (ISSN 2049-1573). 9(1) doi: 10.1002/sta4.285. 2020.
. Estimating seal pup production in the Greenland Sea by using Bayesian hierarchical modelling. The Journal of the Royal Statistical Society, Series C (Applied Statistics) (ISSN 0035-9254). 69(2) doi: 10.1111/rssc.12397. 2020.
. Detecting money laundering transactions with machine learning. Journal of Money Laundering Control (ISSN 1368-5201). 23(1) pp 173-186. doi: 10.1108/JMLC-07-2019-0055. 2020. Fulltekst
. Pairwise local Fisher and naive Bayes: Improving two standard discriminants. Journal of Econometrics (ISSN 0304-4076). 216(1) pp 284-304. doi: 10.1016/j.jeconom.2020.01.019. 2020. Arkiv
. 2018
What price semiparametric Cox regression? Lifetime Data Analysis (ISSN 1380-7870). 25(3) pp 406-438. doi: 10.1007/s10985-018-9450-7. 2018. Fulltekst Arkiv
. 2017
Parametric or nonparametric: The FIC approach. Statistica sinica (ISSN 1017-0405). 27(3) pp 951-981. doi: 10.5705/ss.202015.0364. 2017.
. 2016
Bayesian AVO inversion to rock properties using a local neighborhood in a spatial prior model. The Leading Edge (ISSN 1070-485X). 35(5) pp 431-436. doi: 10.1190/tle35050431.1. 2016.
. A Gaussian-based framework for local Bayesian inversion of geophysical data to rock properties. Geophysics (ISSN 0016-8033). 81(3) pp R75-R87. doi: 10.1190/geo2015-0314.1. 2016.
. 2015
A Gaussian-based framework for local Bayesian inversion of geophysical data to rock properties. Geophysics (ISSN 0016-8033). 81(3) pp R75-R87. doi: 10.1190/GEO2015-0314.1. 2015.
. Academic chapter/article/Conference paper
2020
Explaining Predictive Models with Mixed Features Using Shapley Values and Conditional Inference Trees. In: Lecture Notes in Computer Science (LNCS). (ISBN 978-3-030-58805-2). pp 117-137. doi: 10.1007/978-3-030-57321-8_7. 2020. Arkiv
. 2015
Parametric or nonparametric: the FIC approach for stationary time series. In: Proceedings of the 60th World Statistics Congress of the International Statistical Institute, ISI2015. (ISBN 978-90-73592-35-3). pp 4827-4832. 2015. Fulltekst
. Academic lecture
2022
Prediction Explanation with Shapley values. Explainable AI Seminars @ Imperial; Online, 2/3/2022.
. 2021
Efficient Shapley value explanations through feature groups. The 28th Nordic Conference in Mathematical Statistics; Tromsø, Norway/ Online, 6/21/2021 - 6/24/2021.
. Explaining individual predictions when features are dependent: More accurate approximations to Shapley values. 30th International Joint Conference on Artificial Intelligence; Online/Montreal, 8/19/2021 - 8/26/2021.
. Efficient and simple prediction explanations with groupShapley: A practical perspective. Italian Workshop on Explainable Artificial Intelligence 2021; Milano, Italy/ Online, 12/1/2021 - 12/3/2021.
. 2020
How to open the black box – individual prediction explanation. Statistics seminar series at Department of Mathematical Sciences, NTNU; Trondheim, 3/9/2020.
. 2019
Opening the black box -- individual prediction explanation. Big Insight Day 2020; Oslo, 11/14/2019.
. How to open the black box -- Individual prediction explanation. Det 20. norske statistikermøtet; Stavanger, 6/18/2019 - 6/20/2019.
. 2018
Parametric or nonparametric, that’s the question. The FocuStat conference 2018, 5/22/2018 - 5/25/2018.
. 2017
Estimating the seal pup abundance in the Greenland Sea with Bayesian hierarchical modeling. Det 17. norske statistikermøtet; Fredrikstad, 6/12/2017 - 6/15/2017.
. A focused model selection criterion for selecting among parametric and nonparametric models. Building Bridges at Bislett, 5/22/2017 - 5/24/2017.
. Bayesian modelling of cluster point process models. Spatial Statistics 2017; Lancaster, 7/4/2017 - 7/7/2017.
. 2016
Estimating seal pup abundance with LGCP. Autumn Meeting on Latent Gaussian Models, 10/10/2016 - 10/11/2016.
. FIC with a nonparametric candidate – a new strategy for FIC construction. FICology; Oslo, 5/9/2016 - 5/11/2016.
. 2015
An Approximate Bayesian Inversion Framework based on Local-gaussian Likelihoods. Petroleum Geostatistics; Biarritz, 9/7/2015 - 9/11/2015.
. An approximate Bayesian geophysical inversion framework based on local-Gaussian likelihoods. Oslo Graduate School in Biostatistics Workshop; Klækken, Hønefoss, 5/29/2015 - 5/30/2015.
. Parametric of Nonparametric: The FIC Approach for Time Series. 18th Norwegian Statistical Meeting; Solstrand, Bergen, 6/16/2015 - 6/18/2015. Omtale
. 2014
Parametric or Nonparametric: The Focused Information Criterion Approach. 2014 Joint Statistical Meetings; Boston, 8/2/2014 - 8/7/2014.
. 2013
Parametric or Nonparametric: The Focused Information Criterion Approach (+ Approximate Bayesian Inference). SFI-lunsj; Norsk Regnesentral, Oslo, 10/20/2013.
. Parametric or Nonparametric: The FIC Approach. 29-th European Meeting of Statisticians; Budapest, 7/20/2013 - 7/25/2103 1:00:00 AM.
. Parametric or Nonparametric: The FIC Approach. 17th Norwegian Statistical meeting; Halden, 6/11/2013 - 6/13/2013.
. Abstract
2015
An Approximate Bayesian Inversion Framework based on Local-Gaussian Likelihoods. EarthDoc. doi: 10.3997/2214-4609.201413634. 2015. Omtale
. Lecture
2022
Statistical embedding: Beyond principal components. Seminar series in Statistics and Data Science; Oslo, 11/22/2022.
. 2019
Mindre rutinearbeid med maskinlæring -- Automatisk deteksjon av hvitvasking. Make Data Smart Again; Oslo, 5/9/2019.
. 2018
XGBoost - efficient tree boosting. Big Insight lunch seminar, 1/31/2018.
. Detecting money laundering transactions – two stories. DNB Data Summit 2018; Oslo, 11/30/2018.
. 2016
New focused approaches to topics within model selection and approximate Bayesian inversion. Disputas, 4/1/2016.
. Empirical likelihood. Trial lecture, PhD, 4/1/2016.
. 2013
Approximate Bayesian Inference for Geophysical Inverse Problems. Oslo Graduate School in Biostatistics Workshop; Hønefoss, 5/24/2013 - 5/25/2013.
. Poster
2021
Explaining individual predictions when features are dependent: More accurate approximations to Shapley values. The 30th International Joint Conference on Artificial Intelligence (IJCAI-21); Montreal (virtuelt), 8/19/2021 - 8/26/2021.
. groupSHAP: Efficient Shapley value explanation through feature groups. Geilo Winter School; Online, 1/25/2021 - 3/29/2021.
. Doctoral dissertation
2016
New focused approaches to topics within model selection and approximate Bayesian inversion. Faculty of Mathematics and Natural Sciences, University of Oslo. pp 185. 2016.
. Masters thesis
2012
. Report
2022
Saldoprognoser. Norsk Regnesentral. NR-notat SAMBA/42/22. pp 38. 2022.
. AI/ML for 5G and Beyond Cybersecurity. Norsk Regnesentral. NR-notat DART/15/22. pp 25. 2022.
. 2021
groupShapley: Efficient prediction explanation with Shapley values for feature groups. Norsk Regnesentral. NR-notat SAMBA/20/21. 2021.
. Whitepaper on Exabel’s Factor Model. EXABEL. pp 7. 2021.
. White paper on performance evaluation of volatility estimation methods for Exabel. EXABEL. pp 12. 2021.
. 2019
Shapley explanations using conditional inference trees. Norsk Regnesentral. NR-notat SAMBA/18/19. pp 33. 2019.
. 2018
Detecting money laundering transactions -- which transactions should we learn from? Norsk Regnesentral. NR-notat SAMBA/06/18. pp 22. 2018.
. Estimating seal pup production in the Greenland Sea using Bayesian hierarchical modeling. Norsk Regnesentral. NR-notat SAMBA/04/18. pp 25. 2018. Fulltekst
. 2017
Statistical modeling of repertoire overlap in entire sampling spaces. Norsk Regnesentral. NR-notat SAMBA/13/2017. pp 15. 2017. Fulltekst
. Maskinlæring for vurdering av forsikringsrisiko. Norsk Regnesentral. NR-notat SAMBA/14/2017. pp 81. 2017.
. 2011
Hypotesetesting av strekklengde for Seigmenn. Norsk Regnesentral. NR-notat SAMBA/25/11. pp 28. 2011.
. Vindprognoser og strømpriser. Norsk Regnesentral. NR-notat SAMBA/26/11. pp 21. 2011.
. Popular scientific article
2011
. Programme participation
2015
Hvis man sjekker en billion kvinner, vil man finne fem slike par. 2015. Aftenposten TV [TV] 10/22/2015. Fulltekst
. Website (informational material)
2015
To liv: kvinnene i Lillestrøm som ble født på samme dag og døde på samme dag (FocuStat Blog Post). 2015. Fulltekst
.
.

Name: | Martin Jullum |
Title: | Seniorforsker / Senior Research Scientist |
Phone: | (+47) +47 22 85 26 08 |
Email: | Jullum [at] nr [dot] no |
Scientific areas: | Statistical analysis and methodology, Machine learning, Model selection |
![]() | Add to contacts (vCard) |
Show publications |
Academic article
2023
Some recent trends in embeddings of time series and dynamic networks. Journal of Time Series Analysis (ISSN 0143-9782). doi: 10.1111/jtsa.12677. 2023.
. 2022
Using Shapley Values and Variational Autoencoders to Explain Predictive Models with Dependent Mixed Features. Journal of machine learning research (ISSN 1532-4435). 23(213) pp 1-51. 2022. Arkiv Fulltekst
. 2021
Efficient and simple prediction explanations with groupShapley: A practical perspective. CEUR Workshop Proceedings (ISSN 1613-0073). 3014 2021. Fulltekst
. Comparison of Contextual Importance and Utility with LIME and Shapley Values. Lecture Notes in Computer Science (LNCS) (ISSN 0302-9743). 12688 pp 39-54. doi: 10.1007/978-3-030-82017-6_3. 2021.
. Explaining predictive models using Shapley values and non-parametric vine copulas. Dependence Modeling (ISSN 2300-2298). 9(1) pp 62-81. doi: 10.1515/demo-2021-0103. 2021. Fulltekst
. Explaining individual predictions when features are dependent: More accurate approximations to Shapley values. Artificial Intelligence (ISSN 0004-3702). 298 doi: 10.1016/j.artint.2021.103502. 2021.
. 2020
shapr: An R-package for explaining machine learning models with dependence-aware Shapley values. Journal of Open Source Software (JOSS) (ISSN 2475-9066). 5(46) doi: 10.21105/joss.02027. 2020. Arkiv
. Investigating mesh-based approximation methods for the normalization constant in the log Gaussian Cox process likelihood. Stat (ISSN 2049-1573). 9(1) doi: 10.1002/sta4.285. 2020.
. Estimating seal pup production in the Greenland Sea by using Bayesian hierarchical modelling. The Journal of the Royal Statistical Society, Series C (Applied Statistics) (ISSN 0035-9254). 69(2) doi: 10.1111/rssc.12397. 2020.
. Detecting money laundering transactions with machine learning. Journal of Money Laundering Control (ISSN 1368-5201). 23(1) pp 173-186. doi: 10.1108/JMLC-07-2019-0055. 2020. Fulltekst
. Pairwise local Fisher and naive Bayes: Improving two standard discriminants. Journal of Econometrics (ISSN 0304-4076). 216(1) pp 284-304. doi: 10.1016/j.jeconom.2020.01.019. 2020. Arkiv
. 2018
What price semiparametric Cox regression? Lifetime Data Analysis (ISSN 1380-7870). 25(3) pp 406-438. doi: 10.1007/s10985-018-9450-7. 2018. Fulltekst Arkiv
. 2017
Parametric or nonparametric: The FIC approach. Statistica sinica (ISSN 1017-0405). 27(3) pp 951-981. doi: 10.5705/ss.202015.0364. 2017.
. 2016
Bayesian AVO inversion to rock properties using a local neighborhood in a spatial prior model. The Leading Edge (ISSN 1070-485X). 35(5) pp 431-436. doi: 10.1190/tle35050431.1. 2016.
. A Gaussian-based framework for local Bayesian inversion of geophysical data to rock properties. Geophysics (ISSN 0016-8033). 81(3) pp R75-R87. doi: 10.1190/geo2015-0314.1. 2016.
. 2015
A Gaussian-based framework for local Bayesian inversion of geophysical data to rock properties. Geophysics (ISSN 0016-8033). 81(3) pp R75-R87. doi: 10.1190/GEO2015-0314.1. 2015.
. Academic chapter/article/Conference paper
2020
Explaining Predictive Models with Mixed Features Using Shapley Values and Conditional Inference Trees. In: Lecture Notes in Computer Science (LNCS). (ISBN 978-3-030-58805-2). pp 117-137. doi: 10.1007/978-3-030-57321-8_7. 2020. Arkiv
. 2015
Parametric or nonparametric: the FIC approach for stationary time series. In: Proceedings of the 60th World Statistics Congress of the International Statistical Institute, ISI2015. (ISBN 978-90-73592-35-3). pp 4827-4832. 2015. Fulltekst
. Academic lecture
2022
Prediction Explanation with Shapley values. Explainable AI Seminars @ Imperial; Online, 2/3/2022.
. 2021
Efficient Shapley value explanations through feature groups. The 28th Nordic Conference in Mathematical Statistics; Tromsø, Norway/ Online, 6/21/2021 - 6/24/2021.
. Explaining individual predictions when features are dependent: More accurate approximations to Shapley values. 30th International Joint Conference on Artificial Intelligence; Online/Montreal, 8/19/2021 - 8/26/2021.
. Efficient and simple prediction explanations with groupShapley: A practical perspective. Italian Workshop on Explainable Artificial Intelligence 2021; Milano, Italy/ Online, 12/1/2021 - 12/3/2021.
. 2020
How to open the black box – individual prediction explanation. Statistics seminar series at Department of Mathematical Sciences, NTNU; Trondheim, 3/9/2020.
. 2019
Opening the black box -- individual prediction explanation. Big Insight Day 2020; Oslo, 11/14/2019.
. How to open the black box -- Individual prediction explanation. Det 20. norske statistikermøtet; Stavanger, 6/18/2019 - 6/20/2019.
. 2018
Parametric or nonparametric, that’s the question. The FocuStat conference 2018, 5/22/2018 - 5/25/2018.
. 2017
Estimating the seal pup abundance in the Greenland Sea with Bayesian hierarchical modeling. Det 17. norske statistikermøtet; Fredrikstad, 6/12/2017 - 6/15/2017.
. A focused model selection criterion for selecting among parametric and nonparametric models. Building Bridges at Bislett, 5/22/2017 - 5/24/2017.
. Bayesian modelling of cluster point process models. Spatial Statistics 2017; Lancaster, 7/4/2017 - 7/7/2017.
. 2016
Estimating seal pup abundance with LGCP. Autumn Meeting on Latent Gaussian Models, 10/10/2016 - 10/11/2016.
. FIC with a nonparametric candidate – a new strategy for FIC construction. FICology; Oslo, 5/9/2016 - 5/11/2016.
. 2015
An Approximate Bayesian Inversion Framework based on Local-gaussian Likelihoods. Petroleum Geostatistics; Biarritz, 9/7/2015 - 9/11/2015.
. An approximate Bayesian geophysical inversion framework based on local-Gaussian likelihoods. Oslo Graduate School in Biostatistics Workshop; Klækken, Hønefoss, 5/29/2015 - 5/30/2015.
. Parametric of Nonparametric: The FIC Approach for Time Series. 18th Norwegian Statistical Meeting; Solstrand, Bergen, 6/16/2015 - 6/18/2015. Omtale
. 2014
Parametric or Nonparametric: The Focused Information Criterion Approach. 2014 Joint Statistical Meetings; Boston, 8/2/2014 - 8/7/2014.
. 2013
Parametric or Nonparametric: The Focused Information Criterion Approach (+ Approximate Bayesian Inference). SFI-lunsj; Norsk Regnesentral, Oslo, 10/20/2013.
. Parametric or Nonparametric: The FIC Approach. 29-th European Meeting of Statisticians; Budapest, 7/20/2013 - 7/25/2103 1:00:00 AM.
. Parametric or Nonparametric: The FIC Approach. 17th Norwegian Statistical meeting; Halden, 6/11/2013 - 6/13/2013.
. Abstract
2015
An Approximate Bayesian Inversion Framework based on Local-Gaussian Likelihoods. EarthDoc. doi: 10.3997/2214-4609.201413634. 2015. Omtale
. Lecture
2022
Statistical embedding: Beyond principal components. Seminar series in Statistics and Data Science; Oslo, 11/22/2022.
. 2019
Mindre rutinearbeid med maskinlæring -- Automatisk deteksjon av hvitvasking. Make Data Smart Again; Oslo, 5/9/2019.
. 2018
XGBoost - efficient tree boosting. Big Insight lunch seminar, 1/31/2018.
. Detecting money laundering transactions – two stories. DNB Data Summit 2018; Oslo, 11/30/2018.
. 2016
New focused approaches to topics within model selection and approximate Bayesian inversion. Disputas, 4/1/2016.
. Empirical likelihood. Trial lecture, PhD, 4/1/2016.
. 2013
Approximate Bayesian Inference for Geophysical Inverse Problems. Oslo Graduate School in Biostatistics Workshop; Hønefoss, 5/24/2013 - 5/25/2013.
. Poster
2021
Explaining individual predictions when features are dependent: More accurate approximations to Shapley values. The 30th International Joint Conference on Artificial Intelligence (IJCAI-21); Montreal (virtuelt), 8/19/2021 - 8/26/2021.
. groupSHAP: Efficient Shapley value explanation through feature groups. Geilo Winter School; Online, 1/25/2021 - 3/29/2021.
. Doctoral dissertation
2016
New focused approaches to topics within model selection and approximate Bayesian inversion. Faculty of Mathematics and Natural Sciences, University of Oslo. pp 185. 2016.
. Masters thesis
2012
. Report
2022
Saldoprognoser. Norsk Regnesentral. NR-notat SAMBA/42/22. pp 38. 2022.
. AI/ML for 5G and Beyond Cybersecurity. Norsk Regnesentral. NR-notat DART/15/22. pp 25. 2022.
. 2021
groupShapley: Efficient prediction explanation with Shapley values for feature groups. Norsk Regnesentral. NR-notat SAMBA/20/21. 2021.
. Whitepaper on Exabel’s Factor Model. EXABEL. pp 7. 2021.
. White paper on performance evaluation of volatility estimation methods for Exabel. EXABEL. pp 12. 2021.
. 2019
Shapley explanations using conditional inference trees. Norsk Regnesentral. NR-notat SAMBA/18/19. pp 33. 2019.
. 2018
Detecting money laundering transactions -- which transactions should we learn from? Norsk Regnesentral. NR-notat SAMBA/06/18. pp 22. 2018.
. Estimating seal pup production in the Greenland Sea using Bayesian hierarchical modeling. Norsk Regnesentral. NR-notat SAMBA/04/18. pp 25. 2018. Fulltekst
. 2017
Statistical modeling of repertoire overlap in entire sampling spaces. Norsk Regnesentral. NR-notat SAMBA/13/2017. pp 15. 2017. Fulltekst
. Maskinlæring for vurdering av forsikringsrisiko. Norsk Regnesentral. NR-notat SAMBA/14/2017. pp 81. 2017.
. 2011
Hypotesetesting av strekklengde for Seigmenn. Norsk Regnesentral. NR-notat SAMBA/25/11. pp 28. 2011.
. Vindprognoser og strømpriser. Norsk Regnesentral. NR-notat SAMBA/26/11. pp 21. 2011.
. Popular scientific article
2011
. Programme participation
2015
Hvis man sjekker en billion kvinner, vil man finne fem slike par. 2015. Aftenposten TV [TV] 10/22/2015. Fulltekst
. Website (informational material)
2015
To liv: kvinnene i Lillestrøm som ble født på samme dag og døde på samme dag (FocuStat Blog Post). 2015. Fulltekst
.
.