• Bokmål
  • English

Sitemap

SAMBA

SAMBA

Statistical Analysis, Machine Learning and Image Analysis - SAMBA

The SAMBA department has comprehensive theoretical and practical knowledge in the fields of statistics, machine learning and image analysis. We are one of Europe's largest and most competent groups within applied statistics and statistical-matematical modelling. We cover a broad spectrum of methods and are a world leader in some of these areas. The appropriate choice of method for the various problems is thus one of our strengths. Many calculations involve uncertainty and the accurate calculation of this quantity is an important speciality.

Research areas


Last 5 scientific articles

    Vandeskog, Silius Mortensønn; Huser, Raphaël; Bruland, Oddbjørn; Martino, Sara. Fast spatial simulation of extreme high-resolution radar precipitation data using integrated nested Laplace approximations. The Journal of the Royal Statistical Society, Series C (Applied Statistics) (ISSN 0035-9254). doi: 10.1093/jrsssc/qlae074. 2024.

    Skeie, Ragnhild Bieltvedt; Aldrin, Magne Tommy; Berntsen, Terje Koren; Holden, Marit; Huseby, Ragnar Bang; Myhre, Gunnar; Storelvmo, Trude. The aerosol pathway is crucial for observationally constraining climate sensitivity and anthropogenic forcing. Earth System Dynamics (ESD) (ISSN 2190-4979). 15(6) pp 1435-1458. doi: 10.5194/esd-15-1435-2024. 2024.

    Pilán, Ildikó; Prévot, Laurent; Buschmeier, Hendrik; Lison, Pierre. Conversational Feedback in Scripted versus Spontaneous Dialogues: A Comparative Analysis. In: Proceedings of the 25th Annual Meeting of the Special Interest Group on Discourse and Dialogue. (ISBN 979-8-89176-161-2). pp 440-457. 2024.

    Schneider, Max; Guttorp, Peter. What Do We Know Without the Catalog? Eliciting Prior Beliefs from Experts for Aftershock Models. The Seismic Record (TSR) 4(4) pp 259-267. doi: 10.1785/0320240008. 2024.

    Worsnop, Rochelle P.; Scheuerer, Michael; Hamill, Thomas M.; Smith, Timothy A.; Schlör, Jakob. RUFCO: a deep-learning framework to post-process subseasonal precipitation accumulation forecasts. Artificial Intelligence for the Earth Systems (ISSN 2769-7525). doi: 10.1175/AIES-D-24-0020.1. 2024.

Publications in 2025, 2024, 2023, 2022, 2021, earlier years
Postal address:
Norsk Regnesentral/
Norwegian Computing Center
P.O. Box 114 Blindern
NO-0314 Oslo
Norway
Visit address:
Norsk Regnesentral
Gaustadalleen 23a
Kristen Nygaards hus
NO-0373 Oslo.
Phone:
(+47) 22 85 25 00
Address How to get to NR
Social media Share on social media
Privacy policy Privacy policy
Postal address: Norsk Regnesentral/Norwegian Computing Center, P.O. Box 114 Blindern, NO-0314 Oslo, Norway
Visit address: Norsk Regnesentral, Gaustadalleen 23a, Kristen Nygaards hus, NO-0373 Oslo.
Phone: (+47) 22 85 25 00
AddressHow to get to NR