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Abstract� A stochastic model for a petroleum reservoir with L seismic subsurfaces
is presented� The seismic velocities within each layer is described by linear regression
models and Gaussian random �elds� Seismic interpretation errors are modeled as
Gaussian random �elds� Intercorrelations between all subsurfaces and all velocity
�elds are taken into consideration� This simpli�es the handling of deviating wells
and ensures consistent prediction and prediction variances for all L subsurfaces and
L velocity �elds� Bayesian kriging is used for prediction of subsurfaces and velocity
�elds�

In the limit corresponding to exact prior knowledge� the Bayesian method is equiv�
alent to cokriging with �L covariables� In the limit corresponding to no prior knowl�
edge� the method is equivalent to a combination of universal kriging and cokriging
with �L dependent regression models and �L covariables�

� Introduction

The large scale geometry of a petroleum reservoir is usually described by a set of
geological subsurfaces separating almost homogeneous layers� Available information
for the depth to the subsurfaces are precise depth observations in wells� and less
precise information from seismic travel times� The travel times are recordings of the
time used by a sonic pulse from the surface to a re�ecting subsurface� The importance
of the seismic travel times are their lateral coverage� The travel times are usually
available on a �ne�meshed grid which allows an almost continuous � but inexact
� description of the lateral depth trends� On the other hand� the almost exact
well measurements are available in just a few locations possibly several kilometers
apart� The challenge is therefore to combine the exact well measurements with the
general trends from the travel times� This requires the simple kinematic relation
between depth� the velocity of sound� and travel time	 z 
 v � t� In the next section�
spatial stochastic models for v and t are established� and the resulting model for z is
considered� Using kriging techniques� predictions for the velocity �eld and the depth
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are available� The process of calculating the depth to a seismic re�ector from the
measured travel times is known as depth conversion�

In most applications several seismic re�ectors are observed above the reservoir
layers under study� The velocity of sound changes signi�cantly at seismic re�ectors�
Thus� a separate model for the velocity �eld in every layer should be used to obtain
the best results� The traditional approach to depth conversion is to predict the
thickness of each layer independently� This paper proposes a method which considers
all subsurfaces and velocity �elds in one consistent model�

A general problem � at least in o��shore applications � is the very limited
number of wells� The lack of data must be compensated by prior information� so
Bayesian statistics is necessary� This ensures stable and reasonable results for any
number of well observations � including zero�

The paper is organized as follows	 the next section describes the stochastic models�
Section � reviews Bayesian kriging and outlines how the current problem is organized
to �t into the linear kriging machinery� Section  gives an example which illustrates
the properties of the proposed method� Section � close the discussion by some �nal
remarks�

� Stochastic model for depth conversion

The �ne�meshed grids containing the travel times are regarded as continuous ��
dimensional �elds� The recorded travel times to subsurface l is denoted tl�x�� where
x � R� is a lateral reference� The average vertical velocity of sound within a layer
is called the interval velocity and is denoted vl�x�� If both the travel times and the
interval velocities are exactly known� the depth to subsurface L� zL�x�� is found as
the sum of the interval thicknesses� �zl�x�� above	

zL�x� 

LX
l��

�zl�x�����

where �zl�x� 
 vl�x��tl�x� 
 vl�x� �tl�x�� tl���x�� The crucial notational conven�
tion is that properties associated with intervals are given the name of the subsurface
below� The ��operator is used for the di�erence between a property at subsurface l��
and subsurface l� i�e� associated with layer l� Note that by de�nition z��x� 
 t��x� 
 �
for any x�

��� Seismic travel times

The seismic travel times� tl�x� are usually collected on a regular grid sometimes as
�ne�meshed as ����m���m� so the lateral resolution appears very �ne� However� the
measured travel times are an averaged sum of re�ections from a considerable area
depending on the depth to the re�ector� Thus the travel time map� tl�x�� should be
regarded as a smoothed indirect measurement of the depth to the re�ector� There



are also physical limits to the vertical resolution of the seismic sound signals due to
strong attenuation of short wavelengths� These two measuring errors are modeled
as a space dependent random �eld� Rt

l�x�� The �true� unsmoothed travel times to
re�ector l is therefore	

Tl�x� 
 tl�x� �Rt
l�x�� x � R�����

��� Interval velocities

Within a homogeneous layer l the interval velocity usually varies laterally due to
di�erent average rock density and mineralogy� The lateral trend is a linear model	

Vl�x� 

PlX
p��

Ap
l g

p
l �x� �Rv

l �x�� x � R�����

where Ap
l are partly known coe�cient parameters� gpl �x� are known space dependent

regression functions� and Rv
l �x� is modeled as a Gaussian random �eld with zero

expectation� The regression functions are typically interval velocities from stacking
velocities or functions of interpreted travel times� The part of Equation ��� excluding
the residual is called the interval velocity trend� and is denoted by the symbol �Vl�x��

In the Bayesian approach the coe�cient parameters are regarded as multi�Gaussian
distributed random variables� The trained geophysicist should assign prior probabil�
ity distributions to these variables� that is essentially� expectations and variances�

��� Depth to subsurfaces

By de�nition of interval velocity� the thickness of a layer l outlined by two seismic
re�ectors is	

�Zl�x� 
 Vl�x��Tl�x� 

�
�Vl�x� �Rv

l �x�
� �

�tl�x� � �Rt
l�x�

�
���

The residuals are generally small compared to the trends so a reasonable simpli�cation
is to ignore products of residuals	

�Zl�x� �
�
�Vl�x� �Rv

l �x�
�
�tl�x� � �Vl�x��Rt

l�x��

Reorganizing by using �Rt
l�x� 
 Rt

l�x� � Rt
l���x�� R

t
��x� 
 �� and ��Vl���x� 


��Vl�x�� �Vl���x�� gives the depth to subsurface L	

ZL�x� 

LX
l��

�Zl�x�



LX
l��

�
�Vl�x� �Rv

l �x�
�
�tl�x� �

L��X
l��

��Vl���x�R
t
l�x� � �VL�x�R

t
L�x��



The velocity changes� ��Vl���x�� are usually small compared to �VL�x�� Noting that
these velocity changes are multiplied by residuals and using the fact that the sum
of two residuals are dominated by the largest� suggests that simplifying by ignoring
the �velocity�change� terms has minor implications� This simpli�cation reduce the
stochastic model for depth to subsurface L to	

ZL�x� 

LX
l��

�
�Vl�x� �Rv

l �x�
�
�tl�x� �Rz

L�x�����

The time residual is replaced by the depth residual according to Rz
L�x� 
 �VL�x�Rt

L�x��
The depth residual is modeled as a Gaussian random �eld with expectation zero�

Two important aspects should be recognized from Equation ���	 �� The uncer�
tainty in all interval velocities above subsurface L contributes to the uncertainty in
the depth to subsurface L� �� The uncertainty in the travel times to a subsurface
above subsurface L does not contribute to the uncertainty in the depth to subsurface
L� This is a consequence of removing the �velocity�change� terms�

A full speci�cation of the stochastic model for the depth to the subsurfaces requires
a full speci�cation of the residual Gaussian random �elds and the prior multi�Gaussian
distribution for the coe�cient parameters� Independence among di�erent residuals
and the coe�cient parameters is assumed	

CovfRz
l �x�� R

z
l��x

��g 
 � for l �
 l����a�

CovfRv
l �x�� R

v
l��x

��g 
 � for l �
 l����b�

CovfRz
l �x�� R

v
l��x

��g 
 � for any l and l����c�

CovfAp
l � R�x�g 
 � for any residual���d�

The expectations of the residuals are assumed zero everywhere� The variance and
correlation function must be speci�ed for every residual	

VarfR
z�v
l �x�g 


h
�
z�v
l �x�

i�
for l 
 �� � � � � L��a�

CorrfRz�v
l �x�� Rz�v

l �x��g 
 �
z�v
l �x�x�� for l 
 �� � � � � L���b�

Finally consider a vector A containing all P 

PL

l�� Pl coe�cient parameters�
Ap
l � The prior distribution for this multi�Gaussian vector must also be speci�ed in

terms of P expectations� EfAg 
 ��� and a P � P �dimensional covariance matrix�
VarfAg 
 ���

��� Uni�cation of depth and velocity models

Standard linear methods are used for predictions� The multi�layer model must there�
fore be formulated as a linear regression model with a spatial dependent Gaussian



residual	

Z�x� 

PX
p��

Apfp�x� �R�x� 
 f�x� �A�R�x�����

All P coe�cient parameters are organized in the column vector A and the corre�
sponding regression functions are organized in the P �dimensional row vector f�x��
First observe that Equation ��� � the model for depth to subsurfaces � has this
form	 the residual is R�x� 


PL
l��R

v
l �x��tl�x� � Rz

L�x�� and the sum of regression
functions is	

PP
p��Ap�x�fp�x� 


PL
l��

PPl
p��A

p
l g

p
l �x��tl�x�� where P 


PL
l�� Pl is the

total number of coe�cient parameters� The interval velocity model� Equation ����
has exactly the form of Equation ���� The objective however� is to consider depth and
velocity simultaneously so a common regression model must be used� The idea is to
multiply Equation ��� by �tl�x� to obtain a thickness having length units� Note that
this thickness is not the true layer thickness since the depth residuals are ignored�
Once the velocities are �transformed� into thicknesses� a common regression model
for both depths and velocities is possible� Although this is the key to simultaneous
prediction of all subsurfaces and interval velocities� it is mainly a matter of notation�
Details are therefore given in Appendix A�

� Bayesian kriging

Two di�erent kinds of data are considered	 depth observations from every subsurface
and velocity observations from every interval� The number of observations from
subsurface and interval l is denoted N z

l and Nv
l respectively� The lateral locations

of the observations are in principal arbitrary but the position to observations from
vertical wells obviously coincide� The observations are considered exact�

Travel times� tl�x�� and regression functions� gpl �x�� are assumed known for every
x � R��

��� Posterior distribution for coe	cient parameters

A posterior multi�Gaussian distribution for the coe�cient parameters in the velocity
models is assessed from a prior distribution and the available depth and velocity
observations�

Consider a column vector� Z� of all the N 

PL

l�� �N
z
l �Nv

l � depth and velocity
observations �rescaled by �t�� and a vector R of the corresponding N unobserved
residuals	 ZT 
 �Z��x��� � � � � ZN �xN��� and RT 
 �R��x��� � � � � RN �xN��� where �T � is
used for transposed� In this notation� Equation ��� becomes	

Z 
 FA�R�� �

The N � P �dimensional �design�matrix� F is constructed from the known space�
dependent regression functions� Every row corresponds to an observation and every
column corresponds to a particular regression function fp�x��



The prior N�N �dimensional covariance matrix for all the observations are	 Kz 

VarfZg 
 F��F

T �K� where F��F
T is the prior contribution from the trend� and

K is the kriging matrix	 K 
 VarfRg� The Bayesian prediction and prediction
variance for the coe�cient parameters are the expectations and the covariances of
the posterior multi�Gaussian distribution given by	

!�b 
 EfAjZg 
 �� � ��F
TK��

z �Z� F�������

!�b 
 VarfAjZg 
 �� � ��F
TK��

z F�������

This is a standard result from linear regression analysis found in most textbooks on
Bayesian statistics such as Berger ����

��� Kriging

De�ne the prior variance of Z�x� at an arbitrary location� say x� and the prior
covariances between Z�x� and the observation vector� Z	

kz�x� 
 VarfZ�x�g 
 f�x���f
T �x� � k�x�����

kz�x� 
 CovfZ�x��Zg 
 F��f
T �x� � k�x������

where k�x� 
 VarfR�x�g and k�x� 
 CovfR�x��Rg� Using these de�nitions the
Bayesian kriging predictor and the corresponding prediction variance are	

Z�
b �x� 
 EfZ�x�jZg 
 f�x� � �� � kz�x�K

��
z �Z � F������

��b �x� 
 VarfZ�x�jZg 
 kz�x�� kz�x�K
��
z kTz �x������

This result is found in Omre and Halvorsen ��� and in Omre� Halvorsen� and Berteig ���

� Example and discussion

Sections ��� and ��� describes stochastic models for interval velocities and depth to
subsurfaces� Section �� shows how these models can be regarded as a single linear
regression model with a correlated residual which is handled by standard estimation
and prediction techniques as well as Bayesian prediction techniques� This �uni�cation�
of the models determines correlations between separate subsurfaces and between sub�
surfaces and interval velocities� Consequences of these dependencies on predictions
obtained by kriging will be illustrated�

��� Data

Data is taken from a Norwegian o��shore petroleum reservoir� The data are slightly
manipulated to maintain con�dentiality� Two subsurfaces � Top and Base � are
considered�



Figure �	 Recorded travel times� tl�x�� to Top
and Base�

Figure �	 Possible true depth to Top and Base�
Dashed lines are prior guesses� Depth observa�
tions are shown as small circles�

Surface to Top� Top to Base�

Figure �	 Possible true interval velocities� Dashed lines are prior guesses� Velocity observations
are shown as small circles�

Figure � shows a ��� kilometer long cross�section of the travel time maps in the
west�east direction� Figure � shows a cross section of the two subsurfaces� Four wells
� three vertical and one deviating � are indicated by small circles connected by
solid lines� To obtain depths from travel times� interval velocities must be speci�ed�
Figure � shows cross�sections of the possible true velocity �elds and the six velocity
observations from the vertical wells� Available observations are listed in Table ��

��� Stochastic models

The stochastic model for Top is	

ZTop�x� 
 VTop�x�tTop�x� �Rz
Top�x�����

VTop�x� 
 A�
Top �A�

Top �tTop�x�� ����s� �Rv
Top�x������

Note that minxftTop�x�g � ����s� The two coe�cient parameters have simple inter�
pretations	 A�

Top is the average interval velocity to the crest of the geological structure
and A�

Top determines the increase �or decrease� in interval velocity at the �anks� So
A�
Top controls the curvature of the geological structure�
The stochastic model for Base is	

ZBase�x� 
 VTop�x�tTop�x� � VBase�x� �tBase�x�� tTop�x�� �Rz
Base�x�����

VBase�x� 
 A�
Base �Rv

Base�x���� �



Subsurface� X�coor� Depth Velocity
Well interval �km� �m� �m�s�
	 Top 
���� �� 	���

Base �� ���
� Top 
��� �� ����

Base 
� ���
 Top ���� 
 ����

Base ��� ��


 Top 
��� �

Base 
�
�� ���

Table �	 Available observations� Note
that interval velocity observations are
only available in vertical wells�

Residual � a �m� �

Rz

Top�x� 
m 	��� Spherical
Rv

Top�x� 	�m�s ��� Gaussian

Rz

Base�x� �m ���� Spherical
Rv

Base�x� ��m�s ��� Gaussian

Table �	 Speci�cations for the Gaussian ran�
dom �elds� The covariance functions are�
CovfR�x�� R�x��g � ����jx� x

�j� a��

The stochastic models for Top and Base include four residuals� They are mod�
eled as Gaussian random �elds with zero expectation� Table � gives the speci��
cations used in the computations� The spherical correlation function is de�ned by

��r� a� 
 � � �
�
r
a
� �

�

�
r
a

��
for r � a and � else� The Gaussian ��� order exponential�

correlation function is de�ned by ��r� a� 
 exp����r�a����

A full speci�cation of the stochastic model requires prior guesses on the coe�cient
parameters� The expectations and standard deviations are found in Table ��

General �gure caption� Cross�sections of predicted depths and velocities are
shown in Figures  to �� Predictions� Z��x�� are shown as solid lines and predic�
tion variances� ���x�� are shown as dotted lines of Z��x� � ��x�� Well observations
are shown as small circles� Observations from the same well is connected by a solid
line� The horizontal axis are in the west�east direction and spans approximately ���
kilometers� The vertical scale are meters and meters per second for depth and velocity
predictions respectively�

��� 
Traditional� versus proposed method

The traditional approach to predicting the depth to subsurfaces in a layered media
is to start by predicting the uppermost subsurface� Prediction of the second sub�
surface is done by adding the predicted thickness of the intermediate layer to the
uppermost subsurface� Prediction variances are obtained for the �rst subsurface and
the intermediate layer� The problem however� is to evaluate the prediction variance
for the second subsurface� Simple addition of the two prediction variances would give
the correct answer if the �rst subsurface and the thickness of the intermediate layer
where uncorrelated� This is not so	 the thickness of the intermediate layer between



Traditional method� Proposed method�

Figure 	 Predicted depth to Top and Base� Notice the failure of the traditional approach at the
deviating well�

Table �	 Expectation �� standard deviation �� and correlations between the coe�cient parameters
for �� 	� �� � and 
 wells�

Bayes estimates GLS estimates �universal kriging�
	 of wells � �prior� � � � 
 � � 

	 of obs� � ��� 
�
 ��
 �� 
�
 ��
 ��
Parameter � � � � � � � � � � � � � � � �
A�
Top

m�s ���� �� ���� �� ���� �� ���� � ���� � ���� �� ��� �
 ��� ��

A�
Top

m�s� ���� ��� �
�� �
� �
�� ��� ���� ��� �
�� 
�� ���� ���� 
��� ���� ���� ���

A�
Base

m�s ���� ��� ���� ��� ���� ��� ��
 �� ���� ��� ��� ��� ��� �� ���� ���
CorrfA�

T
� A�

T
g � ����� ���
� ����� ����� ����
 ��� ���


CorrfA�
T
� A�

B
g � � � ���� ����� � ���� ����

CorrfA�
T
� A�

B
g � � � ����� ����� � ����� �����

Top and Base is	

�ZBase�x� 
 ZBase�x�� ZTop�x�


 VBase�x� �tBase�x�� tTop�x�� �Rz
Base�x��Rz

Top�x��

which is �anti��correlated to ZTop�x� due to the common residual Rz
Top�x�� Ignoring

negative correlations causes to large prediction variances� Figure  compares the
traditional approach to an approach where all correlations are considered� Both are
produced by Bayesian kriging� The results are almost identical except from at the
right �ank� The prediction variance for Base fails to be zero at the well observation�
The very strong intercorrelations between �ZBase�x� and ZTop�x� in the vicinity of
the well is ignored in the traditional approach leading to wrong results�

A di�erent� but less dramatic e�ect� is that the rightmost observation of Base
should have an impact on the prediction of Top� This is obviously not true for the
traditional approach since Top is predicted independently of Base� The proposed
method however� gives a deformation of the prediction for Top directly above the
observation� Notice also a small local reduction in the prediction variance�

��� Bayesian kriging

Bayesian kriging is a necessity to obtain reasonable results in some applications� the
lack of well observations in o��shore applications make universal kriging unreliable�



� wells �prior speci�cation��

� wells�


 wells�

� wells�


 wells�

Figure �	 Predicted depth to Top and Base by
Bayesian kriging�

Figure �	 Predicted depth to Top and Base by
universal kriging�

Figures � and � show predictions by Bayesian and universal kriging respectively� The
predictions are conditioned on di�erent numbers of wells�

The di�erence between Bayesian and universal kriging is the method for obtain�
ing estimates for the coe�cient parameters� Both methods use simple kriging for
local adaptions in the vicinity of observations� Table � contains Bayesian and GLS
estimates for the coe�cient parameters� The estimation of A�

Top and A�
Base are very

successful even when a single well is used� The reason is that the speci�ed variance
for the residuals are quite small compared to the prior variances for the coe�cient
parameters� The acceleration parameter� A�

Top� controlling the curvature� is not suc�
cessfully estimated before any of the deep observations in well � or  are included�



Depth and velocity observations�

Only depth observations�

Only velocity observations�

Figure �	 Bayesian depth predictions for Top�
The trend for predictions with both depth and
velocity data has been subtracted to exaggerate
the local in�uence of the data�

Depth and velocity observations�

Only depth observations�

Only velocity observations�

Figure �	 Bayesian velocity predictions for in�
terval between Top and Base�

��� Use of velocity information

The impact of velocity observations on depth predictions are quite small due to
strong intercorrelations� To visualize this Figure � shows depth predictions for Top
conditioned on �� all observations �� depth observations alone �� velocity observations
alone� To exaggerate the variations the predicted trend obtained by using all data
are subtracted from all the predictions� The two upper �gures are almost identical
indicating minor in�uence from velocity observations� Notice especially the �hump�
on the right side due to the depth observation of Base below� The reduction in
uncertainty at this location is seen quite clearly� The prediction in the lower �gure do
not interpolate the depth observation since it is conditioned on velocity observations
alone�

Figure � shows the predicted interval velocity in the layer between Top and Base�



Table 	 Generalized least squares estimates for expectation �� standard deviation �� and correla�
tions of the coe�cient parameters for all observations� depth observations� and velocity observations�

GLS estimates �universal kriging�
Observations� Depth�velocity Depth Velocity
� of observations ��� � �
Parameter � ��� � ��� � ���
A�
Top �m�s� 	��� �		� 	��� �		� 	��
 �		�

A�
Top �m�s�� ���� ��	�� ���� ���	� ��	� ����

A�
Base �m�s� ��� �	��� ���� ���
� ���� �	��

CorrfA�
Top� A

�
Topg ����
 ����
 �����

CorrfA�
Top� A

�
Baseg ���	 ����	 �

CorrfA�
Top� A

�
Baseg ����� ���	� �

The in�uence from the depth observation of Base in the deviating well is seen as a
hump and a small reduction in prediction variance�

Table  shows the corresponding estimated coe�cient parameters� The more
sensitive GLS estimates are shown� The general observation is that adding velocity
data has minor implications since depth and velocity data are highly correlated�

Note however that A�
Base is determinedmore precisely using the � relevant velocity

observation than the  relevant depth observations� The reason is that the � velocity
observations splits into two sets of uncorrelated observations while all the depth
observations are strongly correlated�

� Final remarks

A new method for depth conversion of seismic travel times to L re�ecting subsurfaces
has been presented� The method has the following characteristics	

" it is a combination of cokriging with �L covariables and L dependent linear
regression models for velocity and depth trends�

" predictions are possible by Bayesian or universal kriging�

" the predicted depths and velocities are conditioned on all observations from the
N subsurfaces and N velocity �elds�

" depth predictions interpolate the relevant depth observations� and velocity pre�
dictions interpolate the relevant velocity observations�

" prediction variances for all predictions are available�

" using deviating wells are trivial�

" estimates of coe�cient parameters in the velocity models are based on all ob�
servations�

Conditional simulation based on the same model is described in Abrahamsen and
Omre ���� Simulation is necessary for the assessment of uncertainty in volumetric
predictions�
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A Uni�ed notation for depth to subsurfaces and interval ve�

locities

We intend to show that the regression models	

Vl�x� 

PlX
p��

Ap
l g

p
l �x� �Rv

l �x�����

ZL�x� 

LX
l��

�
�Vl�x� �Rv

l �x�
�
�tl�x� �Rz

L�x�����

can be written as a single regression model	

Z�x� 
 f�x� �A�R�x��

The exercise is mainly a change in notation�
It will prove convenient to use a new equivalent set of regression functions	

fpl �x� 
 �tl�x�g
p
l �x��

Multiplying Equation ���� by �tl�x� and introducing new regression functions gives	

Vl�x��tl�x� 

PlX
p��

Ap
l f

p
l �x� �Rv

l �x��tl�x�����

ZL�x� 

LX
l��

Vl�x��tl�x� �Rz
L�x������

Note that Equation ���� is equivalent to Equation ���� since �tl�x� is considered a
known function�



All coe�cient parameters will be organized in a P 

PL

l�� Pl�dimensional column
vector starting with the P� parameters for the �rst interval and so on	

AT 
 �A�� � � � � AP �



�
�A�

�� � � � � A
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The square brackets simply emphasize the initial grouping of parameters� The space
dependent regression functions fpl �x� are organized accordingly in a P �dimensional
row vector such that the trends can be written
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The crucial point is to replace all fpl �x��s irrelevant for a certain surface by zeroes	
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Introducing generic forms	
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ZL�x�� for depth to subsurface L
VL�x��tL�x�� for velocities in L� � to L
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Using these gives the single regression model

Z�x� 
 f�x� �A�R�x������

for both depths to subsurfaces and velocities� The parameter vector� A� is indepen�
dent of the interpretation of Z� f � and R�

Equation ���� describes Vl�x��tl�x� rather than Vl�x� and the same applies to
the Bayesian kriging equation� This implies that the velocity observations must be
multiplied by �tl�x� when used in the kriging equation� The result � the predicted
surface � must therefore be divided by �tl�x� to obtain the interval velocity �eld�

For the N observations of the surfaces Equation ���� can be written

Z 
 FA�R�����

where Z is the N observations organized as a column vector and R is the correspond�
ing unknown residuals� The N�P �dimensional matrix F contains the corresponding
regression functions� Every row of F is the P �dimensional f�x� vector for the corre�
sponding observation�




