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Abstract. The depth to subsurfaces in a multi-layer model is obtained by adding
the thickness of layers. However, the choice of layering is not unique so there will
often be alternative ways of obtaining the depth to a particular subsurface. Each
layer thickness can be described by a stochastic model accounting for uncertainties
in the thickness. Stochastic models for the depth to subsurfaces are obtained from
these. Alternative layer models will give alternative stochastic models and thus
alternative depth predictions for the same subsurface. Two approaches to resolve
this ambiguity is proposed. The first uses an established method of unbiased linear
combination of predictors. The second and new approach combines the alterna-
tive stochastic models into a single stochastic model giving a single predictor for
subsurface depth. This predictor performs similarly to the approach combining
several predictors while drastically reducing computational costs. The proposed
method applies to layered geological structures using a combination of universal
or Bayesian kriging and cokriging.

1 Introduction

Consider the problem of mapping the depth to subsurfaces separating geological
layers within a petroleum reservoir. The top and base of the reservoir are often
visible on seismic data so accurate depth maps are obtained from depth converted
travel time maps. The internal layering will rarely exhibit reliable seismic signals,
so the thickness trend of each layer is mapped using geological interpretation of
bore-hole data. The total thickness of the internal reservoir layers will seldom add
up to the thickness depicted from seismic data. This ambiguity must be resolved
to provide consistent depth maps describing the reservoir layers.

Two approaches for resolving this ambiguity is discussed. The first approach
is adapted from econometrics and forecasting (Bunn, 1989; Granger, 1989), and
consists of predicting the depth to the subsurfaces by combining alternative depth
predictions ‘in an optimal manner’. This approach works, but it is computationally
expensive. An alternative and new approach is therefore proposed. Instead of
combining the predictors, different stochastic models are combined. The result
is a single stochastic model with a single associated predictor. These approaches
perform very similar but computer expenses are dramatically reduced.
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Reference, (Z = 0)
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Figure 1. Schematic illustration of a reservoir formation. The double arrows
indicate a stochastic model for the thickness of the corresponding layer, AZ;.

2 Position of the problem

The stochastic model for the thickness of layer ¢ may include a deterministic
trend, m;(x), and a zero mean Gaussian random field, ¢;(x), for the residual error
(Abrahamsen, 1993):

AZ;(x) = m;i(x) + €;(x); x € R%.

The stochastic model for the depth to subsurface [ becomes Z!(x) = Zézl AZ;(x).

Figure 1 shows a schematic cross-section of a reservoir where subsurfaces Top
Reservoir and Base Reservoir are assumed to be seismic reflectors. For a layer
i bounded by two seismic reflectors, the trend is m;(x) = v;(x)A¢;(x), where
v;(x) is velocity and At;(x) is the seismic travel time. Models for the depth to
Top Reservoir and Base Reservoir would be ZT(x) = AZrgr(x) and ZBR(x) =
AZrr(x) + AZgr(x) respectively (see Figure 1 for notation). Thickness trends,
m;(x), for the internal reservoir layers are usually based on little data and many
assumptions so the variance of the corresponding residual error could be large.

As an alternative method for obtaining the depth to Base Reservoir the thick-
ness of all the internal layers could be added to Top Reservoir: ZBR(x) = AZrg(x)+
AZp3(x) + AZp2(x) + AZp;(x). In practical applications the former model is
preferred because seismic data are assumed more accurate than geological inter-
pretation.

Lets look at a less obvious situation. The depth to Top Layer 1 can be obtained
by adding layer thicknesses to the depth of Top Reservoir or by subtracting layer
thicknesses from the depth to Base Reservoir:

2T (%) = AZgn(x) + {AZLQ(X) +AZp3(x) add to TR
AZgp(x) — AZp;(x) subtract from BR.

It is not obvious which alternative to choose. Since the seismic reflectors are
assumed accurately determined, Figure 1 suggests that subtracting from Base
Reservoir could be a better choice. Similar reasoning suggest that obtaining Top
Layer 2 by adding Layer 3 to Top Reservoir is a good choice. However, these choices
leaves a ‘gap’ between the two subsurfaces so the trend, mp2(x), for the thickness
of Layer 2 is never considered. Moreover, this choice has a serious implication on
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Figure 2. Four alternative methods for constructing the depth to the subsurfaces
given in Figure 1.

TR: TL2: TL1: BR:
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Figure 3. Alternative methods for constructing the depth to Top Reservoir
(TR), Top Layer 2 (TL2), Top Layer 1 (TL1), and Base Reservoir (BR). Labels
correspond to the graphs in Figure 2.

the uncertainty of the thickness of Layer 2: Assuming the residual errors, €;(x), to
be independent implies that the variance of the thickness of Layer 2 is

Var{Z™?(x) — 2™ (x)} = Var{AZ13(x)} + Var{AZg(x)} + Var{AZy;(x)}.

This variance is usually significantly larger than Var{AZ L2 (x)} and the possible
strong correlation between the depth to Top Layer 1 and Top Layer 2 is lost.

The discussion has motivated the need for an approach where several methods
can be used simultaneously, so the unpleasant need for choosing one particular
method becomes obsolete.

Figure 2 shows four graphs, each corresponding to a method for constructing
all subsurfaces in Figure 1. The depth to a particular subsurface is found by
following the arrows to the subsurface; an arrow pointing downwards means that
the corresponding thickness is added whereas an arrow pointing upwards means
that the corresponding thickness is subtracted. Although some graphs give the
same result for a particular subsurface, the dependencies between the subsurfaces
are different in all four graphs. This has an implication on the predictors for each
subsurface (Abrahamsen, 1993). Thus, each graph in Figure 2 corresponds to a
method for prediction of the set of subsurfaces so there are actually four different
predictors for each of the four subsurfaces.

Figure 3 illustrates the methods for constructing subsurfaces slightly differently.
Whereas, Figure 2 gives a method for all subsurfaces in each graph, Figure 3 shows
the different methods for each subsurface. Each graph in Figure 3 are labelled
using the labels in Figure 2. Note that although Figure 2 contains four graphs
(or methods), there is only one or two possible ways of adding layers to obtain a
particular subsurface.
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3 Stochastic models for subsurfaces

A stochastic model with a linear trend for the thickness of layer i reads

AZi(x) = gi(x) B; +ei(x); xR, (1)
m;(x)

where g;(x) is a vector of P; known (deterministic) functions, 3, is a vector of
P; unknown parameters, and the residual error, €;(x), is a zero mean Gaussian
random field specified by the standard error, o;(x), and the correlation function
pi(X,y). The correlation function and standard error for the residual error can
occasionally be estimated from bore-hole data. (1) is a multiple linear regression
model with a correlated error term.

A typical model for the thickness of a layer i is AZ;(x) = Bi1 + h(x) Biz +
€;(x), where h(x) is a trend supplied by geologists, so that g}(x) = [1,h(x)].
A typical travel time based model for the thickness of a layer i is AZ;(x) =
[Bi1 + Bizti(x)] At;(x) + €;(x), where #;(x) is the seismic travel time to the mid-
point of layer ¢ and At¢;(x) is the seismic travel time in layer i. So g}(x) =
[At;(x), T;(x)At;(x)]. A positive value for 3;; gives the widely encountered veloc-
ity increase at larger depthes due to compaction (Faust, 1951; Acheson, 1963). A
similar velocity model was used by Hwang and McCorkindale (1994) for predicting
the velocity field and by Xu, Tran, Srivastava and Journel (1992) for predicting
depth. The residual error must account for the uncertainty in travel time (Walden
and White, 1984; White, 1984) and the uncertainty in the interval velocity field
(Al-Chalabi, 1974, 1979; Abrahamsen, 1993).

Consider now a multi-layer model including L layers and subsurfaces. The
depth to the /th subsurface is

l
7'(x) = Y AZi(x) =1"(x) B + £'(x),

where f!'(x) = gi(x) --- gj(x) 0’ -+ 0] and B’ = [B) --- B7]. Here, 0 are
zero vectors replacing g;(x) for i =1+1,...,L, and €!(x) = Zézl €;(x).

4 Choice of Predictor

The best linear unbiased predictor for a random field with an unknown linear
trend is the universal kriging predictor. All subsurfaces in a multilayer model are
statistically dependent (covariates) since they all depend on the thickness of at
least one common layer. So the kriging predictor for any subsurface should be
conditioned on available depth observations from all correlated subsurfaces using
universal cokriging (Abrahamsen, 1993).

The kriging predictors depend on the geometry of the observations, the choice
of linear trends for the layer thicknesses, and the statistical properties of the resid-
uals. So alternative methods, such as those illustrated in Figure 2, give different
predictions for the same set of observations.
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Universal kriging was used by Hwang and McCorkindale (1994) and cokriging
by Jeffery, Stewart and Alexander (1996) for predicting velocity fields for depth
conversion. Xu et al. (1992) finds that universal kriging and collocated cokriging
give similar results for depth conversion. Using universal kriging however, gives
the possibility of using non-linear relationships between depth and travel time.

5 Approaches to resolving the ambiguities

5.1 COMBINING PREDICTORS

This approach is an adaption of a method used in time series analysis and fore-
casting and is reviewed by Bunn (1989) and Granger (1989). The idea is to make
a linear combination of alternative predictors.

For a subsurface [ in Figure 1 there are four possible predictors corresponding
to the four different graphs or methods in Figure 2: Z(*al) (x), Z(*é) (x), Z(*Cl)(x), and

Z(*é) (x). A linear combination of these is a possible combined predictor:

7 (x) = szi) (X)Z(*;) (x) + Wle)) (X)Z(*lf) (x) + Wfé) (X)Z(*cl) (x) + Wfé) (X)Z(*é) (x) (2
1! *1
=w" (x) Z" (x).

Assume that each predictor is unbiased and that the covariance matrix, C* (x) =
Cov{Z3'(x)—ZL(x), Z{'(x)— Z}(x)}, of the predictors is known. Then, an unbiased
predictor with the minimum prediction variance is obtained using weights

wi(x) =c*' (x)e/ (e'c*l’l(x) e) : (3)

where e is a vector of unit entries. This result is analogous to the weights obtained
in ordinary kriging.

To form C*(x) requires the kriging prediction variances and even the prediction
covariances between all predictors at any location x. Thus, the drawback of this
method is the necessity to evaluate several predictors, prediction variances, and
prediction covariances for every subsurface.

5.2 COMBINING STOCHASTIC MODELS

This new approach propose that the alternative stochastic models for the depth
to a particular subsurface should be combined according to the magnitude of the
residual error for each model. A linear combination of the alternative stochastic
models is considered.
There are two different methods and stochastic models for the depth to Top
Layer 1 in Figure 1 according to Figure 3. A linear combination reads
ZT (%) = Wy (%) Z(ay (%) + wicid) (%) Zie.a (%) (4)
The weights w(q;’f’g) (x) and w(q;ﬁil) (x) are chosen to minimise the residual error

variance of ZT1!(x) subject to the condition that the weights add to one:

wl(x) = Clil(x) e/ (e'CFl(x) e) , (5)
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where the elements of the covariance matrix, C!,(x) = Cov{Z!(x), Z}(x)}, are
calculated using

Cov{Z,ll(x),Zgn(y)} = Cov{gfl(x),c‘:;,"(y)} = Z 5ot Cov{ei(x),ei(y)}, (6)

€ intervals

where s = —1 when interval i is added in one model and subtracted in the

other. Otherwise, s¢® = 1. The combined residual error variance is Var{Z'(x)} =

[e'Clil(x) €] ! which is less than or equal to Var{Z!(x)} for any method a.

Similar combinations must be constructed for all the subsurfaces. It is then
straightforward — but requires some bookkeeping — to calculate covariances
between depth observations from different subsurfaces. This leaves one stochastic
model and a single associated predictor for the depth to any of the subsurfaces.

Combining predictors is based on the principle of minimising the prediction
error. Combining stochastic models however, is a heuristic approach which must
be justified by comparing the results to the results obtained when combining
predictors. An example will illustrate that the two approaches give almost identical
results. The advantage of the latter approach is speed because only one predictor
for each subsurface is needed.

5.3 RELATED APPROACHES

(2) has the form of a multiple linear regression model for Z*!(x) with Z}!(x);
a = (a), (b), (c), (d) as regressors and the weights as unknown parameters. A
constant term accounting for possible bias can be added (Granger, 1989). This
approach, called ‘stacked regression’ by Wolpert (1992) and Breiman (1992), either
requires historical data or a large data set allowing cross validation. The review
by Clemen (1989) compares different methods for choosing the weights in (2).

6 A Synthetic Example

6.1 STOCHASTIC MODELS

Consider the schematic cross section of a reservoir formation illustrated in Figure 1
and assume constant thickness for each reservoir zone:

AZp;i(z) = Bri + eni(z); 1=1,2,3,

where z € R since only a cross-section is considered. Moreover, AZgr(z) and
AZg(z) are given as:

AZ7p(x) = [5TR1 + Brre {trr(7) — mean (tr()) }:|tTR(x) + err(x)
AZR(.’L') = |:BR1 + ,8R25l_—0x:| AtR(.’L') + ER(.’E).

The expressions in the square brackets are the seismic velocities. A cross-section
of the travel times is shown in Figure 4. A positive value for Brgro gives the usual
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Figure 4. Travel times to Top Reservoir and Base Reservoir (left). Depth trends
obtained when choosing all 8’s equal to one (right).

Table 1. Specified residual errors o', calculated weights w!, and combined
residual errors o!. The methods correspond to labels in Figure 3. Note how the
weights favour the assumed most accurate models.

Subsurface Method Res. error Weight Comb. res. error
l a Var{qu}l/2 wh Valr{Zl}l/2
Top Reservoir: (a—d) 0.1 1 0.1
Top Layer 2: (a) 0.316 0.31 0.194
(b-d) 0.224 0.69
Top Layer 1: (a,b) 0.245 0.62 0.202
(c,d) 0.300 0.38
Base Reservoir: (a—) 0.141 0.92 0.139
(d) 0.361 0.08

velocity increase with increasing depth causing the subsurfaces to be more curved
than the travel times. A positive value for Sy leads to a reduced interval velocity
for higher z values causing Base Reservoir to tilt upwards towards the right.
The standard errors of the residual errors for the layer thicknesses are chosen
as orr(z) = or(z) = 0.1, ora(z) = or2(z) = ors(z) = 0.2, and they are
assumed to be independent for simplicity in the example.

When combining models, the possible methods for constructing each of the
subsurfaces are illustrated in Figure 3. The covariance matrix C' has dimension
one for Top Reservoir and dimension two for the three other subsurfaces. Note
that C! is independent of x because the standard errors of the residual errors
are assumed constant. The resulting weights from (5) and residual errors of the
combined models are given in Table 6.1.

Choosing all S-parameters equal to one and combining the trends according to
(4) using the weights in Table 6.1, gives the depth trends illustrated in Figure 4.
This set of trends are considered the ‘truth’ in the following.
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6.2 SIMULATION EXPERIMENTS

Universal kriging predictors split into two parts; the estimated trend and the local
fitting to observations (Cressie, 1993). The estimated trend depends heavily on
the trend model while the local fitting is mainly dependent on the shape of the
correlation function (variogram). The estimated trend will be used instead of the
full kriging predictor because using trends will exaggerate potential problems and
differences between approaches. Moreover, areas away from wells are the most
difficult to predict accurately and therefore the areas of the greatest concern. The
conclusions reached will carry over to the less sensitive kriging predictors in areas
outside well control. It is reasonable to assume that results are valid in the vicinity
of well observations. Three different approaches are tested:

1. Combining predictors (estimated trends) according to (2).

2. Estimating trends using stochastic models combined similar to (4).

3. Like 2. but using a Bayesian prior on the 3’s.

Ten sets of depth observations have been drawn from a multinormal distribution
with the expectations given by the depth trends in Figure 4, and covariances
obtained from the weights and (6). The location of these observations are obtained
by dividing the x-axis into three segments and “drilling” one vertical well in each
segment at a random location.

Trends have been estimated for each set of observations using the three ap-
proaches. The resulting ten sets of trends are seen in Figure 5.

The first approach combines four trend estimates (see Figure 2) using weights
obtained from (3). Note that these weights depend on z.

The second approach, combining models, gives some trends that are far off the
‘true trends’ in Figure 4. This is caused by severe collinearity making it almost
impossible to estimate some of the 8-parameters.

The third approach, imposing a prior distribution on the B-parameters with
expectations 0.5 and COV{B } = diag(2), dramatically improves the estimates of
the S-parameters. The corresponding ten trends in Figure 5 show a behaviour
very similar to the one obtained by combining predictors. The prior distribution
effectively restricts the parameter space so that extreme 3 estimates are prohibited.
Choosing a prior with large standard error (200%) and an expectation far away
from the true value (0.5 compared to 1) still gives good results. So the approach
is appearently robust to poor and vague prior specifications.

6.2.1 Bias and Errors

To investigate bias and accuracy, one hundred sets of observations have been drawn
using the procedure described above. Figure 6 (left) displays the average empiri-
cal bias (difference between ‘true’ and estimated trend) of the resulting hundred
estimated trends for subsurface Top Layer 2. It is seen that all three approaches
have little bias (<3%). This is expected since model assumptions for the estimators
agree with the model that generated the data. However the average empirical trend
error, Var{‘true’ — estimated trend}l/ 2, in Figure 6 (right) clearly show that the
model combination approach have difficulties. The two other approaches produce
acceptable empirical prediction errors.
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Figure 5. Ten sets of trends obtained by: 1. combining estimated trends (top
left), 2. combining stochastic models (bottom left), and 3. combining stochastic
models and using a Bayesian prior on the 3’s (top right).
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Figure 6. Average empirical bias (left) and error (right) from 100 simulations for
Top Layer 2. (- - - ) combined predictors, (- - -) combined model, and (—) combined
model with priors on 8 parameters.

7 Closing remarks

Two solutions to the problem of combining different methods for obtaining depthes
to subsurfaces have been discussed. The first approach combines alternative pre-
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dictors and the second approach merges alternative stochastic models. The latter
approach is approximately 10 times faster but suffers from collinearities that
are handled by imposing a prior distribution. The example showed that even a
misspecified prior gave good results so the approach appear to be robust.

When combining predictors, a rigorous minimisation criteria for the predic-
tion error is employed. The approach combining models however, uses a heuristic
minimisation criteria for the residual variance. The usefulness of this approach
is therefore justified by its performance. The two methods gave almost identical
results for the synthetic example so in this situation it is possible to conclude that
the model combination approach performs equally well.

The method has been implemented in commercial software and has been suc-
cesfully used in many field studies.
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