

Monitoring thin sea ice thickness with MODIS

Approach and preliminary results

Øystein Rudjord, Rune Solberg and Øivind Due Trier

Norwegian Computing Center

16.01.2013

Why thin ice thickness?

- Sea ice is an important component in the climate system
- Sensitive indicator of climate change
- Areas of thin ice important for ship navigation
- Useful in numerical weather forecasting

Basic idea

- Heat from the water beneath thin sea ice penetrates the ice
- Heat flux through the ice is assumed inversely proportional to the ice thickness
- If the surface temperature and atmospheric conditions are known, the ice thickness can be estimated

The thin ice thickness model

- Model by Yu & Rothrock (1996)
- Model the heat balance on the ice surface as

$$F_{total} = F_r - F_l^{up} + F_l^{dn} + F_s + F_e + F_c$$

- Thermal equilibrium: $F_{total} = 0$
- Night images: $F_r = 0$

$$F_l^{dn} - F_l^{up} + F_s + F_e + F_c = 0$$

 F_r : solar radiation heat flux F_l^{up} : upwelling longwave heat flux F_l^{dn} : downwelling longwave heat flux F_s : turbulent sensible heat flux F_e : latent heat flux F_c : conductive heat flux

The thin ice thickness model

- Conductive heat flux: F_c

$$= \frac{k_i k_s (T_f - T_s)}{k_s H + k_i h} \quad \text{Yu \& Rothrock (1996)}$$

Longwave radiation:

$$F_l^{up} = \varepsilon_i \sigma T_s^4 \qquad F_l^{dn} = \varepsilon_a \sigma T_a^4$$

 T_f : freezing temperature of sea water T_s : surface temperature of ice/snow T_a : air temperature h: snow thickness H: ice thickness ε : emissivity

The thin ice thickness model

- Latent heat: $F_e = \rho_a C_e L u_2 (e_a e_{s0}) 0.622 / P_a$ Maykut (1978)
- Sensible turbulent heat: $F_s = \rho_a c_p C_s u_2 (T_a T_s)$ Yu & Rothrock (1996)
- Assume empirical models for snow thickness, h(H), thermal conductivity of sea ice, k_i(S), sea ice salinity, S(H), and saturation vapor pressure, e_s(T).
- Given values for T_s , T_a and u_2 we can solve for ice thickness, H.

- ρ_a : air density
- P_a : air pressure
- C_s and C_e : bulk transfer coefficients
- L: Latent heat of vaporization
- u_2 : 2m wind speed
- c_p : specific heat of air
- *e_a*: vapor pressure @2m
- e_{s0} : saturation vapor pressure @surface

Automatic processing chain

- Get T_s (via Key's algorithm) from thermal MODIS bands of Aqua
- T_a and u_2 from re-analysed ERA interim data
- Estimate ice thickness, H, for every pixel in MODIS image
- Use Aqua AMSR-E microwave images to exclude areas with thick ice:

$$\frac{T_{89GHz}}{T_{19GHz}} > 1$$

- Mask out land
- Use MODIS cloud mask

Area for testing

Svalbard, winter of 2010/2011

NR Thermal composite Output product (R:12 μm , G:11 μm , B:6.7 μm)

Svalbard 2011-01-02

Svalbard 2011-01-02

Thermal composite image (R:12 μ m, G:11 μ m, B:6.7 μ m)

Output product (without TIM)

NR

11

Svalbard 2011-01-02

Validation

- In situ ice thickness measurements on Svalbard by Norwegian Polar Institute (EM31, EM-bird, drilling)
- Sea ice charts from Norwegian Meteorological Institute

Image credits: A. Renner, Norwegian Polar Institute

Conclusions and way forward

Conclusions

- Automatic production of high resolution sea ice thickness maps (~1 km)
- Has applications in ship navigation, numerical weather forecasting, climate studies and studies of microwave ice products
- ► Results for night time data look plausible, but some work remains

Future work:

- Improve cloud masking of night images
- ► Improve modelling of sea ice thickness in daytime images
- Validation

Backup slides

Backup: empirical models

- Snow thickness:
 - h = 0 for H < 5cm
 - h = 0.05H for 5cm <= H <= 20cm
 - h = 0.1H for H > 20cm
- Freezing temperature of sea water: $T_f = -0.055S_w$
- Thermal conductivity of sea ice: $k_i = k_0 + \beta S / (T_s T_0)$

Backup: empirical models

- ► Sea ice salinity:
 - S = 14.24 19.39H for $H \le 0.4m$
 - S = 7.88 1.59H for H > 0.4m
- Snow thickness:
 - h = 0 for H < 5cm
 - h = 0.05H for 5cm <= H <= 20cm
 - h = 0.1H for H > 20cm

Svalbard winter 2010/2011

NR

18

Concistency between same-day estimates

01:30 03:05 04:45

Svalbard, 2011-01-02

Undetected Haze

Kara sea 11-02-2011

Thermal

Thin ice product

Svalbard 2011-02-01

Thin Ice Thickness

2m

0m

Output product

21

Svalbard 2011-02-01

Output product (thick ice mask removed)

Daytime images

- More data available
- All bands available better cloud masking
- Need to describe heat flux from solar radiation

Solar radiation heat flux

$$F_r = (1 - \alpha_S)F_{SW} - I_0$$
$$I_0 = i_0(1 - \alpha_S)F_{SW}$$

Albedo estimated from MODIS SR product (Liang, 2000)

Transmittance set constant for ice and snow

$$F_{SW} = \frac{S_0 (\cos \theta)^2}{1.2 \cos \theta + (1 + \cos \theta) 10^{-3} e_0 + 0.0455}$$
 Shine (1984)

$$F_r + F_l^{dn} - F_l^{up} + F_s + F_e + F_c = 0$$

F_{SW}

 $\alpha_s F_{SW}$

 I_0

Results: Daytime data

Reflectance color composite

Thin ice product

No detection of thin ice

Results: Daytime data

Reflectance color composite

Thin ice product

No detection of thin ice

Other sea ice thickness missions

CryoSat

SMOS

AMSR-E, SSMI sea ice concentration

Not all clouds are detected

Thin ice product

Svalbard 13-12-2010